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During this reporting period (August 1, 1986 to January 31, 1987),
effort was directed to two tasks, namely;

- modeling airplane configurations;

- predicting nonlinear sectional characteristics.
Work accomplished during this period is presented below.
(1) Modeling airplane configurations

The primary objective of this project is to determine how an airplane
configuration should be modeled to predict both longitudinal and lateral
aerodynamic characteristics at high angles of attack. For this purpose the
following configurations have been investigated: A generic fighter model,
an F-16 and an F-18 configuration with leading-edge flap deflection and an
F-106B configuration. Furthermore, the F-16XL and X-29 configurations have
also been examined. Calculated results for the latter configurations will
be presented in the final report. In the following, some calculated results
will be presented and discussed.

(a) Modeling a generic fighter configuration.

This is an airplane model tested in the 12-ft tunnel at NASA Langley
Research Center (Ref. 1). As shown in Fig. 1, the configuration includes a
cylindrical body with lifting and control surface made of flat plate. The
sectional data from Ref. 2 were used in the calculation . The nonlinear
sectional data were used as near-field solutions to be matched iteratively
with far-field solutions obtained from a lifting-surface theory. In the
calculation an over relaxation factor was used for the wing. However, the
horizontal tail required an underrelaxation factor to achieve convergence.
This is probably mainly due to a coplanar wing-tail interaction. 1In this
case, not only the vortex strips on the wing and tail must be lined up to
avoid unrealistic downwash induced on the tail, but also the relaxation
factor on the tail must be reduced to avoid divergence. Figs 3 and 4 show
the predicted results. It is seen that at angles of attack greater than 22
deg., the lateral characteristics are not correctly predicted. This is
probably due to forebody vortices which are not accounted for in the code.

(b) An F-16 configuration.

As shown in Fig. 5, this airplane has a slender leading-edge extension.
Thus, an additional discrete strake vortex is needed to model the augmented
vortex 1ift effect. Like other airplanes which have been modeled, there is
no difficulty in modeling lifting surfaces. However, the F-16 has a dis-
tinct inlet which makes the body cross sections change rapidly. In addition
the inlet makes it more difficult for the fuselage aerodynamic characteris-
ties to cconverge if the real body shape with the nacelle is used. In the
following, smooth body cross sections are assumed. The predicted over-all
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characteristics, as shown in Figs 7 and 8, agree reasonably well with the
experimental data.

(c) An F-18 configuration with deflection of leading edge flaps.

Calculation related to the F-18 in clean wing configuration has been
reported in the last progress report. In this reporting period, effort was
devoted to modeling the leading edge flap deflection. The deflected leading
edge flaps tend to make the flow separate at a higher angle of attack. The
2-D viscous effect is accounted for by using nonlinear sectional data. The
sectional characteristics used are shown in Fig. 10. Again, agreement
between the calculated results and the experimental data is reasonable as
can be seen in Figs. 11 and 12. The experimental data are taken from Ref,
3.

(d) An F-106 B configuration.

An attempt was made several years ago to predict lateral-directional
characteristics of F-106B configurations with and without vortex flaps and
compare these with data from the Langley 12-ft. tunnel. At that time, it
was found that the predicted angle of attack for vortex breakdown to occur
at the trailing edge was reasonable, However, the forward progression rate
of burst point was predicted to be too fast, so as to cause inaccurate
prediction of lateral characteristics at high angles of attack. The
progression rate used in the code was based on data of thin flat delta
wings. Recently, it was discovered that negative upper surface slopes in
the spanwise direction due to thickness distribution tended to slow down the
forward movement of burst point (see Fig. 13 and Ref. 4). After several
exploratory numerical experimentation, it was found that if the spanwise

upper surface angle (i.e., tan-1(azc/ay)) was assumed to reduce the local

angle of attack to an effective value, the latter could be used to determine
the delayed breakdown point location. Based on this idea, the F-106 con-
figuration with the basic case 29 conical camber was re-examined. The
results shown in Figs 14-15 now exhibit good agreement with data.
Apparently, additional basic data on the effect of spanwise upper surface
slope on vortex breakdown are needed.

(2) Predicting nonlinear sectional data

The airfoil codes being used are the Eppler's code and the SAAP code.
Both codes can be used to determine the angle of zero lift and aerodynamic
characteristics up to stall a. For a thin airfoil, the characteristics at
angles beyond stall can not be predicted accurately by these airfoil codes.
For the present purpose, they are assumed to follow the same shapes as a
flat plate. The latter experimental characteristics can be found in Ref. 2.
As an example, the ¢, VS a curve for an NACA 64A204 airfoil is illustrated

in Fig. 6, For a thick wing, the Epplers code can be applied to obtain the
2-D characteristics. However, compared with the experimental data, the code
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tends to overpredict the maximum lift coefficient. More research is needed
to improve the theoretical method for stall and post-stall prediction of
airfoil characteristics.
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Figure 1. A Generic Fighter Model
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Figure 3 Longitudinal Aerodynamic Characteristics
for the Configuration of Figure 1.
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Figure 9 An F/A-18 Configuration with Leading-Edge Flaps
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